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ABSTRACT   

The Telescopio Nazionale Galileo (TNG)[9] hosts, starting in April 2012, the visible spectrograph HARPS-N. It is based 
on the design of its predecessor working at ESO’s 3.6m telescope, achieving unprecedented results on radial velocity 
measurements of extrasolar planetary systems. The spectrograph’s ultra-stable environment, in a temperature-controlled 
vacuum chamber, will allow measurements under 1 m/s which will enable the characterization of rocky, Earth-like 
planets. Enhancements from the original HARPS include better scrambling using octagonal section fibers with a shorter 
length, as well as a native tip-tilt system to increase image sharpness, and an integrated pipeline providing a complete set 
of parameters. 

Observations in the Kepler field will be the main goal of HARPS-N, and a substantial fraction of TNG observing time 
will be devoted to this follow-up. The operation process of the observatory has been updated, from scheduling 
constraints to telescope control system. Here we describe the entire instrument, along with the results from the first 
technical commissioning. 
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1. INTRODUCTION  

The main scientific rationale of HARPS-N is the confirmation and characterization of terrestrial planets by combining 
transits and Doppler measurements. In particular, it will dedicate a large amount of observation time to the follow-up of 
candidates identified by the Kepler mission. Also, it will be used to search for rocky planets in the habitable zones of 
solar-like stars. 
The HARPS-N Project is a collaboration between the Astronomical Observatory of the Geneva University (lead), the 
Harvard-Smithsonian Center for Astrophysics in Cambridge (USA), the Universities of St. Andrews and Edinburgh, the 
Queens University of Belfast, and the TNG-INAF Observatory. The project started in 2006, but suffered a two-year 
delay due to financial problems. After a re-organization of the project in 2010 it was successfully completed in less than 
two years. In March and April 2012, HARPS-N was installed at the Nasmyth B Focus of the 3.6m TNG, at the 
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Observatory of the Roque de los Muchachos, La Palma Island. The first commissioning took place in April and the first 
scientific observation were started on May 21st. HARPS-N will be offered to the community starting in August 2012. 
 
HARPS-N is an echelle spectrograph. This instrument allows the measurement of radial velocities with the highest 
accuracy available in the northern hemisphere and is designed to avoid spectral drifts due to temperature and air pressure 
variations thanks to a very accurate control of pressure and temperature. HARPS-N is fiber-fed by the Nasmyth B Focus 
of the 3.6m TNG telescope through a Front End Unit (FEU). The two HARPS fibers (object + sky or simultaneous 
reference) have an aperture on the sky of 1". Both fibers are equipped with an image scrambler to provide a uniform 
spectrograph pupil illumination, independent from pointing decentering.  

2. GENERAL CHARACTERISTICS 

HARPS-N is a fiber-fed, cross-dispersed echelle spectrograph, based on  the design of its predecessor working at ESO 
3.6m [7]. This successful spectrograph already has proven its capability to achieve a precision better than 1 meter per 
second  and revealed  several super-earth planets in the habitable zone , as for example HD 85512[10]. 
Two fibers, an object and a reference fiber of 1 arcsec aperture pick up the light at the Nasmyth B focus of the telescope 
and feed the spectrograph either with calibration or stellar light. The fiber entrance is re-imaged by the spectrograph 
optics onto  a 4k×4k CCD, where echelle spectra of 69 orders are formed for each fiber. The covered spectral domain 
ranges from 390nm to 690 nm. The resolution of the spectrograph is given by the fiber diameter and reaches an average 
value of R = 115000. At this resolution each spectral element is still sampled by 3.3 CCD pixels. The spectrograph is 
mounted on a nickel plated stainless steel  mount and contains no moving parts. Furthermore, in order to avoid spectral 
drifts due to temperature and air pressure variations, it is accurately controlled in pressure and temperature. In Figure 1 
the mechanical mount (on the left) and the installation inside the vacuum vessel (on the right) are shown. A summary of 
the main HARPS characteristics is given in Table 1. 
 

 
Figure 1 – HARPS-N mechanical design and vacuum vessel 
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Table 1 – HARPS-N main characteristics 

Spectrograph type Fiber fed, cross-dispersed echelle spectrograph 
Spectral resolution R   = 115’000 
Fiber field FOV = 1” 
Wavelength range 383 nm - 690 nm 
Total efficiency e   = 8 % @ 550 nm (incl. telescope and atmosphere @ 0.8" 

seeing) 
Sampling s   = 3.3 px per FWHM 
Calibration ThAr + Simultaneous reference  (fed by 2 fibers) 
CCD Back-illuminated  4k4 E2V  CCD231 (graded coating) 
Pixel size 15 µm 
Environment Vacuum operation  -   0.001 K temperature stability 
Global short-term precision 0.3 m/s (10E-9) 
Global long-term precision better than 0.6 m/s (2x10E-9) 
Observational efficiency SNR = 50 per extracted pixel on a Mv=8, TExp = 60 sec 
wavelength accuracy 60 m/s (2x10E-7) on a single line 

 
2.1 Stability 

One of the peculiar characteristics of HARPS-N is its extraordinary instrumental stability. This performance is achieved 
thanks to the particular care taken to minimize the sources of instability. 

° Very high precision temperature control to avoid drifts due to temperature changes 
° Vacuum operation to avoid drift due to changes in atmospheric pressure 
° The spectrograph is installed in the observatory on ground floor to minimize the 

vibration 
° The octagonal fiber and the added scrambler stage to guarantee very high input beam 

stability 
 

2.2 The simultaneous reference technique 

To reach such precise measurement of radial velocity, the spectrograph removes possible residual instrumental drifts 
from the measured RV and guarantees an accurate localization of the wavelength in the detector with the simultaneous 
reference technique. For this purpose HARPS-N uses two fibers which feed the spectrograph simultaneously and forms 
two well-separated spectra on the CCD detector. Both fibers are wavelength calibrated at the beginning of the night. 
During scientific observations the first fiber is fed with the star light, and on this spectrum the stellar radial velocity is 
computed by referring to the wavelength solution determined at the beginning of the night. The second fiber is 
illuminated with the same spectral reference all the time, during wavelength calibration and scientific exposures. If an 
instrumental drift had occurred in between, the simultaneous reference spectrum on the second fiber would measure it. 
 
2.3 Scheduling of observations  

One of the HARPS-N software modules is the Short Term Scheduler (STS) that helps to prepare the list of observations 
for the night. The list is composed of Observation Blocks (scientific, calibration and technical) containing templates, that 
correspond to specific configurations of the spectrograph and data acquisition modes. These templates are executed by a 
dedicated software, the HARPS-N Sequencer, that dispatches the commands to the corresponding subsystems. More 
details are described in the software section of this article.  
 
2.4 Real time data reduction (DRS) 

The DRS [1] provides to the observer a complete reduced data set only 25 seconds after the end of the exposure. The 
data reduction pipeline takes into account the data images (calibration, bias, dark and scientific), performs quality control 
on them and executes a complete data reduction. The result is a set of data including reduced, wavelength-calibrated 
spectra, radial velocities, S/N etc. 
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3. INSTRUMENT COUPLING TO THE TELESCOPE 

The instrument comprises two parts: the spectrograph which is located in the ground floor of the telescope and the Front 
End and Calibration unit which it is mounted on the telescope Nasmyth B fork. An optical fiber link sends the light from 
the Front End Unit to the spectrograph. Figure 2 shows the schematic view. 

 
Figure 2 – HARPS-N general schematic view 

3.1 Front End Unit (FEU) 

The FEU is the first part of the spectrograph where the incoming light from the telescope and from the calibration unit is 
conditioned and collimated in the fibers. In this stage the incoming beam from the telescope is corrected by the 
atmosphere dispersion corrector (ADC). The star is maintained in the fiber thanks to the tip-tilt mirror acting together 
with the autoguider system. The folding mirror selects which object/reference configuration has to be put into the fibers. 
The optical scheme in Figure 3 shows the optical path inside the FEU and the main components. 

 
Figure 3 – FEU optical scheme 
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3.2 Calibration Unit (CU) 

The calibration unit contains the lamps and their power supply and provides the reference source (thorium, tungsten) for 
the FEU. Two external high-precision references are included. The first is already available and consists of an ultra-
stable Fabry-Perot interferometer [2]. The second one, a stabilized laser-frequency comb, is currently under development 
an will become available in 2013. 
 
3.3 Fiber link 

To send the light from the FEU to the spectrograph we use a 26 m octagonal fiber link. This new geometry increases the 
light scrambling effect and guarantees a very high precision in radial velocity measurement, since they minimize 
spectrograph illumination changes due to the positioning error of the star in the fiber entrance. These fibers have shown 
excellent laboratory performances [3],[4] and demonstrated excellent results on sky [5]. 

4. INSTRUMENT CONTROL ELECTRONICS  

The HARPS-N control electronics are illustrated in Figure 5. The instrument is essentially split up in two physical 
locations – the Front-End Unit and the Calibration Unit, which are near to the Nasmyth B telescope interface, and the 
telescope ground floor containing the spectrograph and detector equipment. The following sections will describe the 
Front End and Calibration Unit. Functionally, the electro-optical mechanisms in the FEU and CU are handled by 
controller/drivers located in a control rack. These controllers are commanded by software running on the PCs that are 
also in the control rack. 
 

 
Figure 4 - Front End Unit 
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Figure 5 – Calibration and Front End Units 

 
4.1 Front End Unit (FEU) 

The HARPS-N FEU is responsible for a number of system functions, and is shown schematically in Figure 5 (right). The 
parts to make up the FEU are summarized in Table 2. 

Table 2 – FEU components 

Movement/component Description 
Calibration fold mirror linear mechanism with 4 fixed positions 
Dust Cover linear mechanism with two positions (open/close) 
Guide camera FLI PL47-20 . Connection to the LCU in the control rack is via USB 
Guide camera ND filters  Two rotating wheels, with four filters each 
Calibration ND filters Two rotating wheels with unconstrained motion (can be set to any position in 360 deg) 
ADC prism Two atmospheric density compensation prisms with unconstrained motion 
Tip-tilt mirror Precision piezo motor and strain gauge position sensors  
 
4.2 Calibration Unit (CU) 

The HARPS-N Calibration Unit has two linear mechanisms to move the reference fibers between 5 positions. Three of 
the positions have lamps, two of which are Thorium-Argon hollow cathode lamps while the other one is a filament 
halogen lamp. The others two positions are used for ultra-stable external references which can be fed through an optical 
fiber connection. At the moment one of these positions hosts the Fabry-Perot interferometer, located in the HARPS-N 
cabinet, close to the spectrograph. 
 

Table 3 – CU source components 

Movement/component Description 
Thorium lamps 1 and 2 The Thorium Argon lamps are type 4160AHP from S&J Juniper & Co. 
Halogen lamp The halogen lamp is a type 6337  Quartz Tungsten Halogen bulb from Newport 
Fabry-Perot The FP interferometer is located close to the spectrograph 
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5. DETECTOR AND CONTROLLER 

5.1 General detector characteristics 

The HARPS scientific camera is based on an e2v CCD231 scientific grade CCD detector and an ARC generation III 
CCD controller. The detector has been integrated in a continuous flow cryostat (CFC) supplied by ESO. The CCD 
controller allows different readout modes (1, 2 and 4 output readout) and different binnings, but to optimize the 
automatic data reduction pipeline and the operations we chose only two fixed configurations of the acquisition mode: 
The detector is configured without binning and the readout is using two outputs. Two readout speeds are provided 
(100kHz and 500kHz per channel) and the readout noise of 3e or better at 100kHz pixel rate and 5e at 500kHz pixel rate. 
The electronic conversion factor is about 1 e/ADU and 1.6 e/ADU in the respective readout modes. The HARPS-N 
science detector system is summarized in Figure 6. 
 

 
Figure 6 – Detector control system scheme 

5.2 CCD 

The CCD is a 4Kx4K, back-illuminated e2v CCD231 with 15μm square pixels. It is a device processed from standard 
silicon process and coated with graded AR coating parallel to the readout direction for enhanced response from 380nm to 
690nm from left to right as shown in Figure.  
 

 
Figure 7 – The CCD coating and quantum efficiency  

5.3 Cryostat 

An ESO supplied continuous liquid nitrogen flow cryostat houses the CCD and a preamplifier board. A dedicated 
controller regulates the LN flow to maintain the temperature of the base plate inside the cryostat at a suitable 
temperature. The CCD mount stage has a separate temperature control system using a Lakeshore controller to maintain 
the CCD temperature at its operating value. 
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5.4 CCD controller 

The HARPS-N Camera control and data acquisition system (UCam) uses the controller hardware from Astronomy 
Research Cameras, Inc. USA (ARC Controllers). The ARC controller provides all the bias voltages and clocks required 
to operate the detector and process the CCD video signal.  

5.5 Shutter  

A 45mm clear aperture bi-stable Uniblitz shutter is mounted just outside the spectrograph vessel to get the timed science 
exposures. The shutter is controlled by its own controller located in the detector electronics rack close to the 
spectrograph. The input to the shutter controller is derived from the ARC controller. 
 
5.6 Data acquisition software 

The camera control and data acquisition system (UCam) operates under PC control, running RTLinux, interfaced to a 
Generation-III ARC Controller. The software can be run remotely with a network connection to the host computer. The 
UCam software runs on three HTTP server processes; Camera Control, File Save and Data De-multiplexer servers. The 
Camera Control server initializes, configures, downloads and executes applications. The File Save server handles the 
image data and writes to disk a meta-data file. It also contains instructions to sample and de-multiplex the raw data 
image. The De-multiplexer server processes the saved data and saves it in FITS file format. A GUI client application is 
used for controlling the UCam server application. 

6. SOFTWARE ARCHITECTURE 

HARPS-N SW is organized in modules, chained together by the Data Flow System. First, the chosen targets are 
scheduled for observation with the short-time scheduler (STS), where their parameters are organized in Observation 
Blocks. The prepared OBs are sent on request to the Observation Control System - the Sequencer. When an OB is get 
into the OCS, all the instrument subsystems are set up according to its definition: the telescope, the spectrograph and the 
detector. Once the observation has been executed, the raw image with the FITS keywords gathered from all the 
subsystems, is registered. Then the appropriate data reduction recipe is automatically triggered  by the ‘Trigger’ software 
and the raw data are reduced.  
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Figure 8 - The HARPS-N software architecture 

6.1 Short Time Scheduler (STS) 

STS is the application which allows the user to prepare the observations. It helps the astronomer to choose and schedule 
the targets for the observing night, as well as to calibrate the instrument. Within the STS the exposures are organized in 
blocks, called the Observation Blocks, of three types: science, calibration and technical. Science OBs contain the 
parameters for the target acquisition, the instrument and the detector set-up. Calibration OBs describe the calibration 
exposures. Technical OBs define the instrument initialization and the start and end procedures of the observing night. 
STS controls the feasibility of the scheduled exposures with respect to the observational conditions and constraints, like 
the airmass limit, out-of-the-night placement etc. The Exposure Time Calculator, which is part of the STS, helps the user 
to optimize the exposure time depending on the SNR and vice versa. The STS GUI is shown on Figure 9. 
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Figure 9 - Short Time Scheduler screenshot 

6.2 Sequencer 

The sequencer is the HARPS-N observation control software. It gets the observation blocks from the STS, and executes 
them according to several XML template files. Sequencer template files define the commands, statements and variables 
to run an Observing Block. Moreover the sequencer is able to emulate HARPS-N units and display, through a GUI, the 
execution status for each of the commands defined in the command template file (Figure 10).  

6.3 Front End Unit, Autoguider and Calibration Unit control (instrument software) 

The FEU and CU software are LabView modules which controls the movements and settings of the instrument and the 
autoguider . This software can also control the units in stand-alone mode as an engineering interface or by the HARPS-N 
sequencer using an XML-RPC interface. 

6.4 Telescope Control System 

HARPS-N has an interface to the TCS. This interface enables the instrument to send commands to the telescope via the 
TNG library [8]. Currently HARPS-N is able to send three commands: Pointing, AG offsets and M2 offsets to calculate 
and correct the focus via an automatic procedure. The connections between both systems are completely asynchronous 
but when the command finishes successfully the TCS returns an Ok status. When an error condition has arisen, the TCS 
also returns a message back to the sequencer flagging that condition. 
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Figure 10 - Sequencer GUI screenshot 

 
Figure 11 – FEU screenshot. Autoguider and Front End Monitor. 
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6.5 Data Reduction Software 

An automatic data reduction system (DRS) is included with HARPS-N to reduce, shortly after the exposure, 
observations for "classical" spectroscopy and high-precision Doppler measurements with simultaneous wavelength 
reference.  
For science exposures, the DRS outcomes are flat-fielded, wavelength-calibrated spectra and, when possible and 
requested, the barycentric radial velocity of the target. Calibration exposures are used by the DRS to calibrate the 
instrument for best-quality scientific reduction. The DRS is designed to run automatically like a batch process on the 
archived frames. All relevant parameters required by the DRS are passed to the DRS through the FITS headers of the 
archived frames. Results of the DRS are stored in the FITS keywords of reduced frames. 
The top level of the DRS is represented by a set of programs (recipes) performing the various calibration and science 
tasks. They take as inputs the raw data produced by the instrument and are executed online. Each raw product has its 
associated DRS recipe which performs the required reduction tasks. An additional top layer application - Trigger - acts 
as an automatic on-line recipe launcher. 
The role of the Data Reduction Software (DRS) is to transform the raw data produced by the instrument into reduced 
data of scientific quality. These represent the basic products from which the user will start in order to perform the desired 
specific analysis. Therefore, the endpoint of the DRS processing is defined as the furthest stage at which the data 
products are still sufficiently generic to be used as inputs for all main HARPS-N science cases.  
 
The main steps of the scientific data reduction are:  

- Bias and dark subtraction   

- Bad pixels correction  

- Background subtraction  

- Order extraction with cosmic rejection  

- Flat-fielding  

- Wavelength calibration  

- Merging and rebinning of the spectral orders  

- Sky subtraction (if applicable)  

- Instrumental drift correction (if applicable)  

- Flux calibration Cross-correlation with a numerical template  

- Radial velocity computation  
 
For HARPS-N the final products of the DRS process have been found to be the extracted, background-subtracted, 
cosmic-corrected, flat-fielded and wavelength-calibrated spectra (with and without merging of the spectral orders). The 
possibility to flux-calibrate the spectra is also available. These products are provided also for the reference fiber (sky or 
simultaneous wavelength calibration) if applicable.  In addition to these reduction products, cross-correlation functions 
of the spectra are also computed to provide high-precision radial velocities. 
One important feature of the DRS environment is the calibration database, in which all calibration products needed to 
reduce science data are stored. The complete calibration database can be accessed at any time by the DRS recipes, which 
always choose the best available calibration dataset. 
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Figure 12 – Screenshot of the data-reduction trigger 

7. PERFORMANCES AND FIRST RESULTS 

7.1 Spectral format and resolution 

The recorded spectral format corresponds well to the calculated values. Table 4 gives the order number, central 
wavelength and the total spectral range covered by the respective echelle order at the top, center, and bottom of the CCD. 
All the orders up to #158 could be localized and extracted using a tungsten flat-field lamp, while the wavelength 
calibration was done using the ThAr spectral lamp. Figure 13 shows a part of the corresponding extracted and 
wavelength calibrated spectrum. 

Table 4 – Central wavelength and spectral range of the echelle orders 

Order N° Central 
wavelength [Å] 

Total spectral 
range Δλ [Å] 

89 6880.8 75.9 
90 6804.4 75.1 
91 6729.7 74.3 
   
156 3951.6 43.4 
157 3926.3 43.1 
158 3901.3 42.8 
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Figure 13 - Portion of the extracted ThAr spectrum order 

The image quality, and thus the spectral resolution, varies only slightly in the cross-dispersion direction (seeTable 5). 
The variation is below 10% across the whole CCD. In the main dispersion direction we encounter a larger spread in 
image quality of the order of 20%-30% increasing toward the red side of the echelle order. This effect is however mostly 
compensated by the echelle-grating dispersion, which increases by about the same amount from the blue to the red side 
of the echelle order. 
 

Table 5 - Image quality of the spectrograph. The FWHM of a spectral line expressed in pixels is indicated for different 
positions on the scientific CCD. 

  Y = 0 Y = 2000 Y = 4000 

X = 0 Dispersion 3.2 3.2 3.7 
Cross-dispersion 3.1 2.9 3.1 

X = 2000 Dispersion 2.8 3.0 4.0 
Cross-dispersion 3.2 3.1 3.8 

X = 4000 Dispersion 2.9 3.2 4.1 
Cross-dispersion 3.3 3.2 4.2 

 
The measured optical parameters are listed in Table 6. These have been determined by means of ThAr calibration 
exposures. The performances are all compliant with the specifications. The image quality could not be measured directly, 
thus we give here only a upper limit estimated from the FWHM values for the spectral lines given inTable 5. In order to 
compute the spectral resolution one has to multiply these values by the pixel size expressed in wavelength. At 530 nm 
for example, in the center of the CCD, the scale is 0.001415 nm/pixel, and the spectral resolution taking into account the 
measured spotsize is computed to about R = 124’000. Because of the changing dispersion and image quality along the 
orders the spectral resolution is not perfectly constant. Nowhere on the CCD does the spectral resolution decrease below 
R = 100,000, however 
. 

Table 6 - Measured spectrograph parameters 

Wavelength range on the CCD 390.1 – 691.5 nm 
Spectral resolution at center 124’000 
Order width (FWHM) at center 3.1 pixels 
Sampling at CCD center 0.0014 nm/pixel 
Separation of fibers 16.8 pixels 
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